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Dunham's Morley Challenge

How Desmos almost let me 
rediscover Conway’s amazing 

proof of Morley’s Theorem



Morley’s Theorem
• For an arbitrary triangle
• There are two trisectors of

each angle
• For each edge, intersect 

the nearest trisectors from
each adjacent vertex

• These are the vertices of 
an equilateral triangle.

• Call the resulting figure the 
Morley diagram for the given triangle



Dunham’s Criteria …

• … For an optimal proof
• Angles only 
• Use angle relationships to deduce that the 

inner triangle is equi-angular
• Not reverse engineered



Desmos
• To investigate angles, use Desmos to 

actually compute angles in a Morley diagram
• Assume angles of triangle are 3, 3, 3
• Assume 3 vertex at (0,0),  3 vertex at 

(0,1), and 3 vertex in upper half plane
• Can compute vertices of inner triangle and 

hence determine the angles.
• Pyth thm for edge lengths, law of sines or 

cosines for angles





Load Desmos Page

https://www.desmos.com/calculator/grytmq8w0a
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Obvious Conjecture



Reverse Engineered Proof
• Given a triangle, it is sufficient to prove the 

theorem for a similar triangle
• Thus, want to show for any triangle there is a 

similar triangle for which the conclusion of 
Morley’s theorem holds

• So let the angles be given, and construct a 
figure like the one in the conjecture.

• Start with an equilateral triangle with sides = 1
• On each side construct a triangle with 

conjectured angles.





Exterior angles 
automatically have the 
right measures



Exterior angles 
automatically have the 
right measures.
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complete the diagram.



Exterior angles 
automatically have the 
right measures.

All we have to do is 
complete the diagram.

Focus on one 
additional line, at left.



• Connect the vertices
• Angles might not 

equal  and 



• Construct lines at 
each vertex making 
angles of  and 

• Lines might not meet 
up

• I’m stuck!



Conway’s Proof
• Dunham told me my efforts were closely 

related to famous proof by Conway
• I found it on the internet:

http://www.cut-the-knot.org/triangle/Morley/conway.shtml

• It was actually the same approach I had tried
• I got this close to finding a proof that 

Conway thought of!!!!
• Of course,  he got all the way there!



• Start with equilateral triangle, side = 1
• Construct triangles on sides as shown



• 3 exterior angles found using 360° rule
• So far, all angles agree with conjectured 

arrangement



• Place a triangle 
with angles , , 
and 120 +  as 
shown

• Scale it so that 
vertices lie on 
the purple 
segments in the 
figure.



• Add a line inside 
this new triangle as 
shown

• Constructed so 
angle above the 
new line is 60+

• Possible because 
 < 60 

60+ < 120+



• Note that third 
angle is 60+

• 60+60+++
= 180

• This shows again 
that the new black 
line always exists 
as shown



• Remember that 
angle: 60 + 

• Mark it in red for 
future reference

• Next: repeat the 
construction in 
the bottom half 
of the triangle 
with blue side



• Add another line 
above the one 
added before

• Shown as thinner 
black line

• Angle marked with 
red arc is 60+



• Add another line 
above the one 
added before

• Shown as thinner 
black line

• Angle marked with 
red arc is 60+

• Third angle is again 
60+

• Note equal base 
angles of small
triangle.



• Yellow triangle is isosceles
• Scale it so the equal sides 

have length 1
• Same as sides of 

equilateral triangle.
• Angles don’t change 

so it still fits along the 
two purple lines



• Don’t yet know where the 
ends of the blue line fall

• We do know they lie on 
the purple lines, possibly 
extended

• Next use congruent 
triangles to show 
they fall at vertices 
on green and red
sides. 



• Consider this yellow triangle



• Consider this yellow triangle
• Claim it is congruent to this 

adjacent yellow triangle
• Angles are equal
• Base of each triangle

has length 1
• Therefore purple side

of left triangle has
equal length to
purple side of
right one.



• Repeat argument with this 
yellow triangle



• Repeat argument with this 
yellow triangle

• It is congruent to this 
adjacent yellow triangle

• Same argument as before
• Same conclusion
• So: the segment 

from top to bottom
vertices makes
angles of  and
 with purple
lines



• This is what we wanted to show
• The construction duplicates

the conjectured diagram for
one of the outer triangles

• Same argument works
for other two outer
triangles.



Proof Complete
• Constructed a triangle with the given angles 

3, 3, and 3
• Angle trisectors create our

conjectured diagram
• Central triangle is 

equilateral
• QED



Final Comments
• There are three cases of the Conway 

construction that have to be considered
• Case we showed:  < 30
• Similar arguments apply if  = 30 or  > 30.
• Many other proofs have been proposed.  

Several of them are presented:
http://www.cut-the-knot.org/triangle/Morley/conway.shtml

• Dunham’s quest for a synthetic 
(ie not reverse engineered) 
angles-only proof remains unfulfilled


