## MINUTE MATH



Dan Kalman - American University www.dankalman.net

Mental Magic

- Make up a polynomial $p(x)$ :
-Positive integer coefficients
-All coefficients less than 10
-Any degree you choose
- I will guess your polynomial
- I need one hint
-What is $p(10)$ ?


## More generally ...

- Let $p(x)$ be a polynomial of any degree with non-negative integer coefficients
- You can find $p$ exactly by knowing just two values: $p(1)$ and $p(p(1))$
- Let $b=p(1)$ (this is the sum of coefficients)
- Given $p(b)$, express it in base $b$ notation.
- Read off the coefficients.


## The

## Quadratic Formula

なんの
Inside Out

- Let $p(x)=(x-r)(x-s)$
- Expand to find $p(x)=x^{2}-(r+s) x+r s$
- Now quad formula gives the roots as

$$
\begin{aligned}
\frac{r+s \pm \sqrt{(r+s)^{2}-4 r s}}{2} & =\frac{r+s \pm \sqrt{(r-s)^{2}}}{2} \\
& =\frac{r+s \pm(r-s)}{2}
\end{aligned}
$$

- When $\pm$ is + we get the larger root
- Theorem: given numbers $r$ and $s$ the larger is $r$
- Let $p(x)=(x-r)(x-s)$
- Expand to find $p(x)=x^{2}-(r+s) x+r s$
- Now quad formula gives the roots as

$$
\begin{aligned}
\frac{r+s \pm \sqrt{(r+s)^{2}-4 r s}}{2} & =\frac{r+s \pm \sqrt{(r-s)^{2}}}{2} \\
& =\frac{r+s \pm|r-s|}{2}
\end{aligned}
$$

- This should give the roots: $r$ and $s$-- what gives?
- Formulas for max and min of two quantities


## The <br> Four 9's Puzzle

## Express a number with four 9's

- $1=99 / 99$
- $2=9 / 9+9 / 9$
- $3=(9+9+9) / 9$
- $\mathbf{4}=(\sqrt{9})!-\frac{9+9}{9}$
- $5=\frac{9+9}{9}+\sqrt{9}$


## Universal Solution

## $\log _{\overline{3}+\overline{+}}\left(\log _{\sqrt{\sqrt{\sqrt{9}}}} 9\right)$

- With $n$ nested radicals, $2^{\text {nd }} \log$ base is

$$
b=9^{\wedge}\left((1 / 2)^{n}\right)=9^{\wedge}\left(2^{-n}\right)
$$

- $9=b^{\wedge}\left(2^{n}\right)$
- $\log _{2}\left(\log _{b}(9)\right)=\log _{2}\left(2^{n}\right)=n$


## Author! Author!

- Terry Moore, AU masters student, 2000
- Solution based on an earlier creation of Verner Hoggatt
- He founded the Fibonacci Quarterly
- See: Howard Eves, "Hail to thee, blithe spirit!", Fibonacci Quarterly, 19 (1981) 193-196. http://www.fq.math.ca/Scanned/19-3/eves.pdf


## Hoggatt's Formula

- Expression for any positive integer $n$
- Each decimal digit appears once, in order
- Universal Solution

$$
\log _{(0+1+2+3+4) / 5}\left(\log _{\sqrt{\sqrt{\cdots \sqrt{-6+7+8}}}} 9\right)
$$

## A Stellar Coincidence

## Familiar Five Pointed Star



Q: What is the angle in each point?
A: $36^{\circ}$

## What's the angle for a 7 pointed star?




## sin 2ીన2న2

## 国 Scientific Calculator



## Explanation

-. $555 \cdots=5 / 9$

- $555 \cdots 5 \approx 10^{k}(5 / 9)$
- $1 / 555 \cdots 5 \approx 10^{-k}(9 / 5)$
- $(\pi / 180)(1 / 555 \cdots 5) \approx(\pi / 180)\left(10^{-k}\right)(9 / 5)$

$$
\begin{aligned}
& \approx \pi\left(10^{-k}\right)(9 / 900) \\
& \approx \pi\left(10^{-k-2}\right)
\end{aligned}
$$

- $\sin ((\pi / 180)(1 / 555 \cdots 5)) \approx \sin \left(\pi \cdot 10^{-k-2}\right)$

$$
\approx \pi \cdot 10^{-k-2}
$$

## $\operatorname{Sin}\left(10^{k}\right)$

- If the angle is in degrees, the sequence converges. Find the limit.
- If the angle is in radians, does the sequence converge?
(I don't think so -- Equidistribution theory)


## Sum Formulas

 forSine and Cosine
$\square$
$\nabla$

$$
\square
$$

$$
\square
$$

$$
\nabla
$$

$$
\boxtimes
$$

$$
\square
$$

$$
\square
$$









$$
B
$$









BEHOLD!

## Josephus Problem

Graham, Knuth, Patashnik,
Concrete Mathematics

|  | 悪 | 1 |
| :---: | :---: | :---: |
| 13 |  | 2 |

高
12
－ 11
重 10
亜 $^{9}$


## Where should you stand?

- Suppose there are $n$ people in the circle
- Which position will be the last remaining?
- Solution: Write $n$ in binary $13 \rightarrow 1101$
- Shift the left-most digit to the right end

$$
1101 \rightarrow 1011
$$

- Convert back to base 10

$$
1011 \rightarrow 11
$$

# Parity of 

## Pascal

## How Many Odd Numbers in Row $n$ of Pascal's Triangle?

$$
\begin{aligned}
& 1 \\
& 11 \\
& 121 \\
& 1331 \\
& 14641 \\
& \begin{array}{llllll}
1 & 5 & 10 & 10 & 5 & 1
\end{array}
\end{aligned}
$$

How Many Odd Numbers in Row $n$ of Pascal's Triangle?


How Many Odd Numbers in Row $n$ of Pascal's Triangle?


## Solution

- Express $n$ in binary
- Count the 1 's to find $m$
- The number of odds is $2^{m}$
- Example: $n=13$
- Binary form for 13 is 1101 so $m=3$
- $2^{3}=8$ odd numbers in the $13^{\text {th }}$ row of Pascal's triangle



## What happens mod $k$ ?

## What happens mod $k$ ?

- I stumbled on this problem ca. 1980
- Library research: papers in maa pubs about every 25 years for past 100 years or more.
- I was right on time!
- Another cycle in the early 2000's launched The PascGalois Project: Visualizing Abstract Mathematics right here at SU.
- Generalized problem, NSF support, student involvement, several of our MAA friends: Bardzell, Shannon, Spickler, Bergner, et al.
- http://faculty.salisbury.edu/~despickler/pascgalois/


# Fraction <br> Addition Made Difficult 

## To add $2 / 3$ and $5 / 8 \ldots$

For differentiable $f$ and $g$,

$$
\begin{gathered}
\frac{f^{\prime}(x)}{f(x)}=(\ln f(x))^{\prime} \text { and } \frac{g^{\prime}(x)}{g(x)}=(\ln g(x))^{\prime} \\
\frac{f^{\prime}(x)}{f(x)}+\frac{g^{\prime}(x)}{g(x)}=(\ln f(x) g(x))^{\prime}=\frac{[f(x) g(x)]^{\prime}}{f(x) g(x)} \\
=\frac{f^{\prime}(x) g(x)+f(x) g(x)^{\prime}}{f(x) g(x)} \\
\frac{f^{\prime}(0)}{f(0)}+\frac{g^{\prime}(0)}{g(0)}=\frac{f^{\prime}(0) g(0)+f(0) g^{\prime}(0)}{f(0) g(0)}
\end{gathered}
$$

Define $f(x)=2 x+3$ and $g(x)=5 x+8$

$$
\frac{2}{3}+\frac{5}{8}=\frac{3 \cdot 5+2 \cdot 8}{3 \cdot 8}
$$

# Interlude: Haunted by Pythagoras 

## The Ghost of Pythagoras



## My Favorite Coffee Drink

## Pythagorean Cup



## When I got back to my office...



Magic Circles


$$
\begin{aligned}
& \text { A Cute Lill } \\
& \text { Theorem }
\end{aligned}
$$

## Lill's Method

- Misnomer - not really a method for finding roots
- Geometric visualization of a root
- Lill was an Austrian military engineer
- Published his method in 1867
- More recently this method has received renewed interest in connection with origami


## Lill's Method Example

- Goal: find a root of

$$
p(t)=4 t^{4}+6 t^{3}+5 t^{2}+4 t+1
$$

- Use coefficients to construct a right polygonal path (the Primary Lill Path).



## Secondary Path

- Add a line from start to second leg of path
- Note the green angle, $\theta$
- Add another edge perpendicular to first
- Repeat
- All green angles are equal
- Varying $\theta$ changes the end point of the secondary path
- Want paths to end at same point



## Lill's Theorem

If the primary and secondary paths end on the same point, then $x=-\tan \theta$ is a root of the polynomial



## Understanding Lill's Theorem

Find legs of the triangles with red hypotenuses


# Marden's Theorem 

## Marden's Theorem

- General topic: relate roots of $p(x)$ to roots of the derivative $p^{\prime}(x)$
- Special case: cubic $p(x)$
- Setting: complex numbers


## Real Polynomials with all Real Roots

Roots of $p^{\prime}(x)$ interlace roots of $p(x)$


## One Dimensional View

- Just view domain of $p(x)$
- Identify special points with labels



## Complex roots




## Lucas' Theorem



## Lucas' Theorem



## Marden's Theorem

- Special case: cubic polynomial $p(z)$
- Roots are 3 noncolinear points in complex plane
- Convex hull is a triangle
- Where (exactly) are the roots of $p^{\prime}(z)$ ?
- Show roots of $p(z)$
- Show roots of $p(z)$
- Show roots of $p(z)$
- Show triangle
- Show roots of $p(z)$
- Show triangle

- Show roots of $p(z)$
- Show triangle
- Bisect sides

- Show roots of $p(z)$
- Show triangle
- Bisect sides

- Show roots of $p(z)$
- Show triangle
- Bisect sides
- Inscribe ellipse
- Show roots of $p(z)$
- Show triangle
- Bisect sides
- Inscribe ellipse

- Show roots of $p(z)$
- Show triangle
- Bisect sides
- Inscribe ellipse
- Mark foci

- Show roots of $p(z)$
- Show triangle
- Bisect sides
- Inscribe ellipse
- Mark foci

- Show roots of $p(z)$
- Show triangle
- Bisect sides
- Inscribe ellipse
- Mark foci
- Those are the roots of $p^{\prime}(z)$

- Show roots of $p(z)$
- Show triangle
- Bisect sides
- Inscribe ellipse
- Mark foci
- Those are the roots of $p^{\prime}(z)$
- INCREDIBLE


