A Social Security Math Problem

Dan Kalman
American University (emeritus)
www.dankalman.net

$\binom{$ Go to home page for links to }{ slides and an animated graph. }

Overview

- Full benefits available at age 66
- If initiation delayed, monthly benefit is higher
- Delay means foregoing some initial payments
- What is the breakeven point?
- How does the breakeven point depend on the length of the delay?

Specifics

- Let E be the amount of full monthly benefit at age 66
- Delaying payment for k months increases monthly benefit by $2 k / 3 \%$
- Benefit is then $E(1+2 k / 300)=E(1+k / 150)$
- By age $66+n$ months will have received

$$
T=(n-k) E(1+k / 150)
$$

- With no delay, $k=0$ and $T=n E$

Example

Say $k=12$. We want total with a 12 month delay to equal the total with no delay

$$
\begin{aligned}
(n-12) E(1+12 / 150) & =n E \\
(n-12)(1.08) & =n \\
0.08 n & =12(1.08) \\
n & =12(1.08) / 0.08 \\
& =162
\end{aligned}
$$

- Conclusion: after delaying for 12 months, we have to receive 150 payments to break even
- Question: how does the break even point vary with k ?

Break Even Analysis

- For $k>0$, want total with a k month delay to equal the total with no delay

$$
\begin{aligned}
(n-k) E(1+k / 150) & =n E \\
n(1+k / 150)-k(1+k / 150) & =n \\
n(1+k / 150)-n & =k(1+k / 150) \\
n k / 150 & =k(1+k / 150) \\
n / 150 & =1+k / 150 \\
n & =150+k
\end{aligned}
$$

- Conclusion: break even point is always reached after 150 payments, independent of k
- That is, after receiving payments for 12.5 years

Does That Make Sense?

- The longer the delay, the greater the increase in payments
- But you always break even after receiving exactly the same number of payments
- That doesn't seem right
- What is really going on?

Rationale

- WLOG, assume $E=1$
- Each payment received is $1+k / 150$
- We get an extra $k / 150$ with each payment
- We missed k payments, so k dollars
- Have to make up those k dollars by adding up the extra amounts of $k / 150$
- After 150 payments we will have made up k dollars

Extension

- Waiting k months versus waiting $j>k$ months
- Break even point: ($n-k$) payments at the k-month-delay rate equals $(n-j)$ payments at the j-month-delay rate.
- Once you start receiving payments after the longer delay, how long will it take to break even?
- Answer: $150+k$ (so $n=150+k+j$)
- Example: Compared to a 12 month delay, any longer delay breaks even after 162 payments at the higher rate.

Greedy Analysis

- Goal: maximize total of payments received
- Assume death occurs at age $66+m$ months
- With a k month delay, receive $m-k$ payments of $(1+k / 150)$
- Total: $T=(m-k)(1+k / 150)$

$$
=(m-k)(150+k) / 150
$$

- Quadratic in k with roots m and -150
- Max occurs at $k=(m-150) / 2$

Greedy Analysis, cont.

- Max occurs at $k=(m-150) / 2$ (vertex)
- Domain for k is $[0,48]$
- If $m \leq 150$, impossible to reach breakeven point for any $k>0$, so take $k=0$
- The vertex is inaccessible if

$$
(m-150) / 2>48 \Leftrightarrow m>246
$$

In this case take $k=48$

- For $m \in[150,246]$, max occurs at $k^{*}=(m-150) / 2$

Translation

- If death occurs at or before age 78.5, don't delay starting ss payments
- If death occurs at or after age 86.5, delay starting ss payments for the maximum 4 years
- Otherwise, age at death is $z \in[78.5,86.5]$
- Optimal plan: delay by $6(z-78.5)$ months
- Example: $z=80$, delay by $6 \cdot 1.5=9$ months
- Example: $z=85$, delay by $6 \cdot 6.5=39$ months
- Great analysis if you can predict how long you will live!

Geometry

- Total earnings function $T(k)$ is a family of parabolas, parameterized by m
- On each parabola, restrict $k \in[0,48]$
- Varying m moves the vertex $\left(k^{*}, T\left(k^{*}\right)\right.$) through this interval
- $k^{*} \leq 0 \Rightarrow T$ decreases, max at left endpoint
- $k^{*} \geq 48 \Rightarrow T$ increases, max at right endpoint
- Otherwise, max at k^{*}

Desmos Animation

https://www.desmos.com/calculator/vanovxjhs8

