Uncommon Mathematical
Excursions:
Links to webpages included in the bibliography
Roger C. Alperin.
A mathematical theory of origami constructions and numbers,
New York Journal of Mathematics, vol. 6 (2000), pp. 119-133,
http://nyjm.albany.edu:8000/j/2000/6-8.html
Branden Archer and Eric W. Weisstein.
Lagrange interpolating polynomial,
MathWorld--A Wolfram Web Resource,
http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html
Phillips V. Bradford. Visualizing solutions to n-th degree
algebraic
equations using right-angle geometric paths: Extending Lill's Method
of 1867,
http://www.concentric.net/~Pvb/ALG/rightpaths.html
The Economics Professor. Envelope Theorem, Arts &
Sciences
Network,
http://www.economyprofessor.com/economictheories/envelope-theorem.php
Thomas Hull.
Origami Mathematics,
http://www.merrimack.edu/~thull/origamimath.html
Dan Kalman.
James E. White 1946-2004,
FOCUS, vol. 24, no. 8 (2004), p. 33.
http://www.maa.org/pubs/nov04.pdf
Dan Kalman.
The Most Marvelous Theorem in Mathematics,
Journal of Online Mathematics and Its Applications
vol. 8, article ID 1663,
http://mathdl.maa.org/mathDL/4/?pa=content&sa=viewDocument&nodeId=1663
Lambert W function,
http://en.wikipedia.org/wiki/Lambert_W_function
Mars exploration rover mission: communications with Earth,
http://marsrovers.jpl.nasa.gov/mission/comm_nav.html
Mars exploration rover mission: mission timeline: cruise,
http://marsrovers.jpl.nasa.gov/mission/tl_cruise.html
Mars exploration rover mission: spacecraft: cruise configuration,
http://marsrovers.jpl.nasa.gov/mission/spacecraft_cruise.html
Mars exploration rovers: mission overview,
http://www.mars.tv/mer/overview.html
Newton's identities,
Wikipedia,
http://en.wikipedia.org/wiki/Newton_identities
J. J. O'Connor and E. F. Robertson.
Mark Kac,
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Kac.html
Ivars Peterson.
The Galois story,
Ivars Peterson's Math Treks, MAA (1999),
http://www.maa.org/mathland/mathtrek_3_1_99.html
Tony Rothman.
Genius and biographers: the fictionalization of Evariste Galois,
American Mathematical Monthly, vol. 89, no. 2 (1982),
pp. 84-106. http://www.physics.princeton.edu/~trothman/galois.html
David Singmaster.
Sources in Recreational Mathematics, an
Annotated Bibliography,
http://us.share.geocities.com/mathrecsources/
Thayer Watkins. The Envelope Theorem and Its Proof,
San Jose
State University,
http://www2.sjsu.edu/faculty/watkins/envelopetheo.htm
Eric W. Weisstein.
Lambert W function, From MathWorld--A
Wolfram Web Resource,
http://mathworld.wolfram.com/LambertW-Function.html
Eric W. Weisstein.
Moving Sofa Problem, From MathWorld--A
Wolfram Web Resource,
http://mathworld.wolfram.com/MovingSofaProblem.html